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K-nearest neighbor classification method (KNN), as one of the top 10 algorithms in data mining, is a very

simple and yet effective nonparametric technique for pattern recognition. However, due to the selective sen-

sitiveness of the neighborhood size k , the simple majority vote, and the conventional metric measure, the

KNN-based classification performance can be easily degraded, especially in the small training sample size

cases. In this article, to further improve the classification performance and overcome the main issues in the

KNN-based classification, we propose a local mean representation-based k-nearest neighbor classifier (LM-

RKNN). In the LMRKNN, the categorical k-nearest neighbors of a query sample are first chosen to calcu-

late the corresponding categorical k-local mean vectors, and then the query sample is represented by the

linear combination of the categorical k-local mean vectors; finally, the class-specific representation-based

distances between the query sample and the categorical k-local mean vectors are adopted to determine the

class of the query sample. Extensive experiments on many UCI and KEEL datasets and three popular face

databases are carried out by comparing LMRKNN to the state-of-art KNN-based methods. The experimental

results demonstrate that the proposed LMRKNN outperforms the related competitive KNN-based methods

with more robustness and effectiveness.
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1 INTRODUCTION

K-nearest neighbor (KNN) classification, since the benchmark KNN method was first introduced
in Ref. [1], has been extensively studied and widely applied in the fields of machine learning and
pattern recognition [2–6]. Owing to its superiorities of the simple implementation, high effective-
ness, and easy intuitiveness, KNN has been viewed as one of the top 10 algorithms in data mining
[7]. The basic idea of the conventional KNN is that the query sample belongs to the class with the
most frequency among its k-nearest neighbors by a simple majority vote. Essentially, as a nonpara-
metric classification technique, these good superiorities of KNN are determined by its attractive
properties [8], i.e., only one parameter of the neighborhood size k , the asymptotically optimal per-
formance in Bayes sense under sufficient conditions [1, 9], and no need of a priori knowledge of
the classification data.
Generally, the KNN-based classification possesses the good performance in many practical ap-

plications of pattern recognition. However, the issues related to one parameter k , a simple majority
vote, and the conventional metric measure such as Euclidean distance still exist [3, 5, 10]. The is-
sue of sensitivity of choosing k always has a major influence on the performance, especially in
the small training sample size cases with existing outliers [11]. How to determine the reason-
able value of k plays a very important role in the KNN-based classification. If k is very small, the
neighborhood region may contain noisy and imprecise points so as to easily make the wrong clas-
sification prediction [10, 12]. In contrast, the neighborhood region with a large value of k may
have more existing outliers that heavily degrade the classification performance. Furthermore, the
choice of the single and uniform value of k for all testing samples is also unsuitable for classifi-
cation because each testing sample may come from different classes in order that the KNN-based
classification performance could be suffered from such neighborhood choice. To support a suitable
value of k for each query sample and overcome the sensitivity of k , some adaptive neighborhood
choices for different query samples are proposed in Refs. [6] and [13]–[17]. As we know, most of
the KNN-based classifiers employ a simple majority vote that assumes each neighbor has an equal
weight for making classification decisions. Obviously, this assumption is not very reasonable in
practice. Specifically speaking, different neighbors have different contributions for classification
and the reliable neighbors should have more contribution. As a result, each neighbor should be
given different weight for making classification decisions and, accordingly, many weighted voting
methods for KNN are developed, such as in Refs. [10], [15], and [18]–[21]. Among these weighted
KNN methods, the classical one is the distance-weighted k-nearest neighbor classifier (WKNN)
[18]. In many KNN-based methods, k-nearest neighbors of each query sample are often sought by
using the conventional distance metric measure such as Euclidean distance. Such chosen neigh-
bors may be unreliable and cannot really reflect the similarities and the discrimination of the query
samples. Thus, the KNN-based classification performance may significantly depend on the metrics
that are adopted to calculate distances between training and testing samples. To address this issue,
the weighted distance metrics [22, 23] and the representation-based methods [2, 24–30] are used
to compute the similarities of samples to determine k-nearest neighbors of each query sample.
Due to the essential discrimination of representation learning [31, 32], the representation coef-
ficients and representation-based distances are often used for choosing nearest neighbors. The
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locally linear k-nearest neighbor method [28] uses representation coefficients to determine the
neighbors for visual recognition. The coarse to fine k-nearest neighbor classifier (CFKNN) [2] uses
the representation-based distances to determine discriminative neighbors of each query sample in
two phases for image classification.
In fact, the main issues above can be easily aggravated by the existing outliers, especially in the

case of the small training sample size [3, 11, 33]. In other words, the KNN-based classification per-
formance can be heavily degraded by the existing outliers in the neighborhoods. With the aim of
improving the performance of KNN and overcoming the negative effect from the existing outliers,
many categorical k-nearest neighbor classification methods have been developed in Refs. [3, 5, 8,
33–38]. The classical one of the categorical k-nearest neighbor methods is called the local mean-
based k-nearest neighbor classifier (LMKNN) using the local mean vector of k-nearest neighbors
per class [33]. The LMKNNmethod is further extended to the kernel version in Ref. [34]. Using the
local mean vector, Gou et al. proposed the local mean-based k-nearest centroid neighbor classifier
[37] and the local mean-based pseudo-nearest neighbor classifier (LMPNN) [3]. The basic idea of
LMPNN is based on both LMKNN and the pseudo-nearest neighbor classifier (PNN) [35]. The ex-
tended version of LMPNN is accordingly proposed by using nearest centroid neighborhood in Ref.
[36] and the good classification performance of the LMPNN is practically verified in Ref. [39]. Zeng
et al. proposed the PNNmethod that designs the categorical pseudo-nearest neighbor by using the
distance-weighted k-nearest neighbors chosen from each class [35]. Due to the advantages of the
local mean vectors in the KNN-based classification, it has been well utilized in some related new
classification methods [5, 8, 38, 40–42].

To further improve the KNN-based classification performance, we present the proposed local
mean representation-based k-nearest neighbor classifier (LMRKNN) method in this article, with
the purpose of overcoming the issues above, especially the sensitivity of k with the existing
outliers in the small sample size cases. In the LMRKNN, the categorical k-local mean vectors
computed by k-nearest neighbors per class are first achieved for reflecting different local sample
distributions of each class in order to reduce the sensitivity of the single and uniform value of
k for classifying all testing samples. Since different local subclasses in each class could have
different importance for classification, each query sample is represented by the linear combination
of the categorical k-local mean vectors, with expectations to make the true local mean vector
play great importance to represent its own class. Instead of using the simple majority vote, the
representation-based distances calculated by the categorical k-local mean vectors are employed
for making the classification decision. The classification performance of the LMRKNN is fully
explored by carrying out extensive experiments on many real datasets downloaded from the
University of California, Irvine (UCI) and Knowledge Extraction based on Evolutionary Learning
(KEEL) repositories and several popular face databases, in comparisons with the KNN, WKNN,
LMKNN, CFKNN, PNN, and LMPNN methods. The effectiveness and robustness of the proposed
LMRKNN is demonstrated by the comparative experimental results. Thus, three key good
properties of the LMRKNN method are held as follows:

—The categorical k-local mean vectors instead of k-nearest neighbors are adopted to capture
the geometric and discriminant information of data and to reduce the sensitivity of k .

—Each query sample is represented by the linear combination of the categorical k-local mean
vectors and each local mean vector is weighted through the representation to provide the
different true importance for its own class in the classification stage.

—The class-specific representation-based distances calculated by the categorical k-local mean
vectors are employed as the classification decision with more pattern discrimination.

In this article, we extend our conference paper, which has been published in the 29th IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI) [43]. With the exception of
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the contents of the conference paper, we still mainly have presented the related work, the detailed
description, and analysis of the proposed LMRKNN, the extensive experiments, and the computa-
tional complexities. The remainder of this article is organized as follows. Section 2 briefly reviews
the related KNN-based classification methods. Section 3 proposes LMRKNNmethod in detail. Sec-
tion 4 gives the analysis of the rationale of the proposed LMRKNN. Section 5 presents extensive
experiments, and Section 6 gives the discussions about the experimental observations of the LM-
RKNN and the computational complexities of the comparative methods. Finally, the conclusions
are drawn in Section 7.

2 RELATED METHODS

KNN is one of the simplest and most effective nonparametric techniques and its many outstanding
extensions have been introduced recently. In this section, we briefly describe three variants, i.e.,
LMKNN [33], LMPNN [3], and CFKNN [2] that are related to our work due to using the local
mean vector in the LMKNN and LMPNN and representation-based distances in the CFKNN. For
the ease of the descriptions in what follows, we first uniformly introduce the notations. In general
classification problems, we assume the set ofn training samples withinM classes is denoted asX =
[x1,x2, . . . ,xn] = [X1,X2, . . . ,XM ] ∈ Rd×n and the set of all the class labels is C = {c1, c2, . . . , cM }.
The class label li of any one sample xi is li ∈ C, and X j = [x j1,x

j
2, . . . ,x

j
nj ] denotes nj training

samples from the class c j .

2.1 LMKNN

The LMKNN method [33], as a classical extension of KNN, is mainly based on the local mean
vector of k-nearest neighbors in each class. It is more robust to the sensitivity of k , especially
under the small sample training size situations with the existing outliers. Given a query sample y,
its k-nearest neighbors from each class c j are chosen by using the Euclidean distance metric as

d
(
y,x ji
)
=

√
(y − x ji )T (y − x ji ). (1)

Let XNN
kj

(y) = [xNN
1j ,x

NN
2j , . . . ,x

NN
kj

] be the set of k-nearest neighbors from class c j . Then, the

local mean vector of the categorical k-nearest neighbors in class c j is calculated as

mNN
kj =

1

k

k∑
i=1

xNN
ij . (2)

Accordingly, d (y,mNN
kj

) for each class is computed and the query sample y is finally classified into

the class with the minimum distance between each categorical local mean vector and y among all
classes.

2.2 LMPNN

The LMPNNmethod is also a promising extension of KNN that is based on the categorical pseudo-
nearest neighbor of each query sample [3]. The pseudo-nearest neighbor from each class is de-
signed by using weighted k-local mean vectors corresponding to k-nearest neighbors. For a given
query sample y, its categorical k-nearest neighbors using Euclidean distance metric are first found
from class c j and denoted as X

NN
kj

(y) = [xNN
1j ,x

NN
2j , . . . ,x

NN
kj

]. Then, the categorical k-local mean

vectors in terms of k-nearest neighbors in each class c j are calculated as

x̄NN
ij =

1

i

i∑
f =1

xNN
f j , i = 1, . . . ,k . (3)
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After computing each distance d (y, x̄NN
ij ), we use k-local mean vectors to design the categorical

pseudo-nearest neighbor xPNj of y as follows:

d
(
y,xPNj

)
=

(
1 × d

(
y, x̄NN

1j

)
+
1

2
× d
(
y, x̄NN

2j

)
+ · · · + 1

k
× d
(
y, x̄NN

kj

))
, j = 1, 2, . . . ,M . (4)

Finally, the query sampley is classified into the class with the closest pseudo-nearest neighbor xPNj
that has the minimum distance d (y,xPNj ) among M classes. It should be noted that both LMPNN

and LMKNN are the same as the nearest neighbor classifier when k = 1, and the number of k is
generally no greater than the smallest number nj of the training samples from class c j among all
the classes.

2.3 CFKNN

The CFKNN method is a two-phase linear representation-based k-nearest neighbor classifier,
which uses the representation-based distances to make classification decisions [2]. In the first
phase, the given query sample y is coarsely represented by the linear combination of all the train-
ing samples as

y = α1x1 + α2x2 + · · · + αnxn , (5)

where αi is the representation coefficient of training sample xi and α = [α1α2 · · ·αn]T . These rep-
resentation coefficients inα can be often solved as ᾱ = (XTX + λI )−1XTy = [ᾱ1ᾱ2 · · · ᾱn]T , where I
is an identity matrix. The representation contribution of xi toy is calculated by the representation-
based distance as follows:

ei = ‖y − xi ᾱi ‖2. (6)

Then, the n0 training samples corresponding to the first n0 smallest ei are chosen as the represen-
tative samples and denoted as Z = [z1, z2, . . . , zn0 ] ∈ Rd×n0 . In the second phase, the query sample
y is further finely represented as

y = β1z1 + β2z2 + · · · + βn0zn0 . (7)

Just like solving α in Equation (5), the optimal β = [β1β2 · · · βn]T can be easily achieved as
β̄ = (ZTZ + γ I )−1ZTy = [β̄1β̄2 · · · β̄n0 ]

T . Using the representation-based distance di = ‖y − zi β̄i ‖2
as the similarity metric, the first k training samples corresponding to the first k smaller di are de-
termined as k-nearest neighbors of y. Finally, the query sample y is classified into the class, which
is most frequent among k-nearest neighbors.

3 THE PROPOSED LMRKNN

In this section, we describe the idea and procedure of the proposed LMRKNN that integrates both
the multi-local mean vectors and the representation-based distance. The purpose of the LMRKNN
is to improve the KNN-based classification performance and reduce the negative effect from the
main issues of KNN, especially in the small sample size cases with the existing outliers.

3.1 The Basic Idea

To overcome the existing outliers in the k-neighborhood, the local mean vector of k-nearest neigh-
bors from each class is calculated for classification, such as in the LMKNN [33], but the sensitivity
of k still exists. As we know, to assign a fixed uniform value to k for classifying all query samples
is unreasonable, and the value of k should be different for each query sample [16]. Since the local
sample distributions in each class are very different and the chosen nearest samples with different
numbers for the given query sample can well reflect the different local sample distributions per
class in the KNN-based classification, the numbers of chosen categorical nearest samples for the
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query sample should be quite different. Furthermore, the local sample distributions of each class
for different query samples are also different. Thus, the uniform value of k for all classes and all
query samples degrades the KNN-based classification performance. Since the categorical multi-
local mean vectors can well represent the different local sample distributions of each class in the
region of the k-neighborhood, they can lessen the sensitive degree of k and improve the robustness
of the KNN-based classification performance. Therefore, the categorical k-local mean vectors are
employed in the classifier design of the proposed LMRKNN.
In the LMRKNN, the categorical k-local mean vectors are involved in making classification de-

cision. Essentially speaking, the different local mean vectors correspond to the different similar
local subclasses of each class for the query sample and can reflect more discrimination informa-
tion. Moreover, the closer local mean vector should have greater importance to represent its own
class for classification. As a result, instead of a simple majority vote among k-nearest neighbors
as the classification decision, the categorical k-local mean vectors in the LMRKNN are adaptively
weighted by using them to represent the query sample before classification. The representation
coefficient of each local mean vector is viewed as the weighted contribution to classifying the
query sample. As stated in the CFKNN [2], the representation-based distances can truly reflect the
similarities of samples. Thus, the class-specific representation-based distances between the query
sample and the categorical k-local mean vectors are used as a similarity metric for the final clas-
sification decision of the proposed LMRKNN. Thus, the proposed LMRKNN holds the superior
properties of KNN, multi-local mean vectors, and representation-based distance, and can over-
come the main issues in the KNN-based classification, and its effectiveness and robustness are
fully verified in Sections 4 and 5.

3.2 The LMRKNN Algorithm

The LMRKNN classification procedure is described in detail in this section. For the given query
sampley, itsk-nearest neighbors chosen from each class are first found by using Euclidean distance
metric in Equation (1). The set of k-nearest neighbors from class c j is still indicated as XNN

kj
(y) =

[xNN
1j ,x

NN
2j , . . . ,x

NN
kj

]. To well reflect different local sample distributions in each class and reduce

the sensitivity of the uniform value of k for all classes, the categorical k-local mean vectors are
computed by using the chosen k-nearest neighbors from each class as follows:

mNN
ij =

1

i

i∑
h=1

xNN
hj , i = 1, . . . ,k . (8)

Let X̄
y
j = [mNN

1j ,m
NN
2j , . . . ,m

NN
kj

] ∈ Rd×k denote the set of k-local mean vectors in class c j .

To adaptively get weighted contribution of each categorical local mean vector to representing
its own class in the process of classifying the query sample y, we use the categorical k-local mean
vectors in each class c j to linearly represent y in terms of

y = s1jm
NN
1j + s2jm

NN
2j + · · · + sk jmNN

kj = X̄
y
j Sk j , (9)

where Sk j = [s1j , s2j , . . . , sk j ]
T , and si j is the representation coefficient associated with the local

mean vector mNN
ij . If X̄

y
j is a nonsingular square matrix, the coefficient vector Sk j can be easily

obtained by

S̄k j =
(
X̄
y
j

)−1
y. (10)

However, X̄
y
j is always a non-square matrix. In such case, Sk j can be obtained as

S̄k j =
((
X̄
y
j

)T
X̄
y
j

)−1
(X̄

y
j )

Ty, (11)
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if (X̄
y
j )

T X̄
y
j is not a singular matrix. To overcome the singularity of X̄

y
j or (X̄

y
j )

T X̄
y
j , the represen-

tation coefficient vector Sk j can be solved by constraining the l2-norm regularization item of Sk j
as follows:

min
{
‖y − X̄y

j Sk j ‖2 + τ ‖Sk j ‖2
}
, (12)

where τ is a regularized parameter. To solve the optimal Sk j , we adopt the Lagrange multiplier to
define the following function

F (Sk j ) = ‖y − X̄y
j Sk j ‖2 + τ ‖Sk j ‖2. (13)

Next, the derivative of F (Sk j ) with respect to Sk j can be calculated as

∂F (Sk j )

∂Sk j
= −2

(
X̄
y
j

)T (
y − X̄y

j Sk j
)
+ 2τSk j

= −2
(
X̄
y
j

)T
y + 2

((
X̄
y
j

)T
X̄
y
j + τ I

)
S j
k j
,

(14)

where I is a identity matrix. Let
∂F (Sk j )

∂Sk j
= 0; we obtain the optimal solution S̄k j of Sk j

S̄k j =
((
X̄
y
j

)T
X̄
y
j + τ I

)−1
(X̄

y
j )

Ty. (15)

It should be noted that the representation coefficient vector Sk j in Equation (9) can be easily
achieved with an optimal closed solution in terms of Equation (15), and the solution S̄k j is very
discriminative for classification and robust to noise samples [44, 45]. Thus, the way of this solution
is adopted in the LMRKNN. The optimal coefficient s̄i j in S̄k j is regarded as the adaptive weight

that reflects the importance ofmNN
ij from its own class for representing and classifying y.

Using the categorical representation coefficients in S̄k j , we design the class-specific
representation-based distance between the query sample y and each class c j as

dk j (y) =
���y − X̄y

j S̄k j
���2. (16)

The representation-based distances in Equation (16) are employed as the discriminative classifi-
cation decision. The good power of the pattern discrimination from Equation (16) stems from the
multi-local mean vectors and the different weighted contribution for classification from each local
mean vector by representation per class. We will further analyze the benefit of the class-specific
representation-based distance in Equation (16) in Section 4. Finally, the query sampley is classified
into the class that has the minimum representation-based distance in Equation (17) among all
classes.

ly = argmin
c j

dk j (y), j = 1, 2, . . . ,M, (17)

where ly is the class label of y. As mentioned above, the pseudo codes of the proposed LMRKNN
method are detailedly summarized in Algorithm 1.

3.3 Differences between LMRKNN and LMKNN, LMPNN, CFKNN

In this section, we clearly elaborate the differences between LMRKNN and three related methods,
i.e., LMKNN, LMPNN, and CFKNN, in order to further emphasize the motivation why we design
LMRKNN.

(1) LMRKNN vs. LMKNN: LMKNN first chooses k-nearest neighbors for a query sample from
each class and then use them to calculate the class-specific local mean vector. It determines
the class label of the given query sample by using the distance between the query sample
and each class-specific local mean vector. In LMKNN, the single and uniform value of k
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ALGORITHM 1: The LMRKNN algorithm

Require

y: a query sample, k : the number of nearest neighbors.
X : a training set with n training samples.
X j : denotes a training subset from the class c j with nj training samples.
C = {c1, c2, . . . , cM }: the set ofM classes.

Ensure:

The class label of the query sample y.

Step 1: Calculate the distance between the query sample y and the training samples from each
class c j .
for i = 1 to nj do

d (y,x ji ) =
√
(y − x ji )T (y − x ji )

end for

Step 2: Seek k-nearest neighbors from each class c j corresponding to the training samples de-

termined by the first k smaller distances d (y,x ji ), denoted as XNN
kj

(y) = [xNN
1j ,x

NN
2j , . . . ,x

NN
kj

].

Step 3: Calculate the categorical k local mean vectors. Each local mean vectormNN
ij is obtained

by the average of the first i-nearest neighbors in class c j .
for i = 1 to k do

mNN
ij = 1

i

∑i
h=1 x

NN
hj

end for

Denote X̄
y
j = [mNN

1j ,m
NN
2j , . . . ,m

NN
kj

]

Step 4: The query sample y is represented by a linear combination of the categorical k-local
mean vectors in each class c j .

y = s1jm
NN
1j + s2jm

NN
2j + · · · + sk jmNN

kj
= X̄

y
j Sk j , Sk j = [s1j , s2j , . . . , sk j ]

T

Step 5: Sk j is solved as S̄k j = ((X̄
y
j )

T X̄
y
j + τ I )

−1 (X̄y
j )

Ty.
Step 6: Calculate the categorical representation-based distance between the query sampley and
each class.
for j = 1 toM do

dk j (y) = ‖y − X̄y
j S̄k j ‖2

end for

Step 7: The query sampley is classified into the class with the closest categorical representation-
based distance.

ly = argmin
c j

dk j (y).

is for all classes, which still brings the sensitivity of k to have the negative effect on the
classification performance. In its classification decision (i.e., Equation (20)), each nearest
neighbor per class gives the identical weight for classification. However, different neigh-
bors should have different weights. Furthermore, one local mean vector per class can not
well reflect the different local sample distributions of its own class. Unlike LMKNN, LM-
RKNN computes the categorical multi-local mean vectors usingk-nearest neighbors of the
given query sample and represents the query sample with a linear combination of all the
training samples from each class. Through the linear combination, the representation co-
efficient of each local mean vector in each class to represent the query sample is obtained
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as the adaptive weight for classification. Using the representation coefficient, the class
label of the query sample is determined by representation-based distances between the
query sample and categorical multi-local mean vectors. Compared to LMKNN, LMRKNN
employs categorical multi-local mean vectors to fully reflect the local sample distributions
of each class, which can overcome the sensitivity of k from the single and uniform value
of k for all classes. Meanwhile, the representation-based distance (i.e., Equation (16) or
(18)) as the classification decision of LMRKNN makes different local mean vectors have
different weighted contribution for classification.

(2) LMRKNN vs. LMPNN: Both LMRKNN and LMPNN employ the categorical multi-local
mean vectors computed by using k-nearest neighbors in each class, but they have different
classification decisions. In LMPNN, the distance between the categorical pseudo-nearest
neighbor and each query sample is indirectly computed and then used as the classification
decision. In the process of the classification decision of LMPNN (i.e., Equation (4)), the
identical weight 1

i
for the i-th local mean vector from each class j is given on its distance

d (y,mNN
ij ). In practice, different categorical multi-local mean vectors should have different

weighted contribution for different query sample’s classification. Thus, the classification
decision of LMPNN can not well reflect the discriminant information and local sample
distributions of each class. To overcome the issues in LMPNN, LMRKNN designs the class-
specific representation-based distance as the classification decision by representing each
query sample as a linear combination of the class-specific multi-local mean vectors. And
using the representation-based distance (i.e., Equation (16) or (18)) in LMRKNN, each local
mean vector from each class has different weight for classification.

(3) LMRKNN vs. CFKNN: CFKNN uses two-phase representation to find k-nearest neighbors
of each query sample. In the first phase, the query sample is represented by a linear com-
bination of all the training samples and the representative nearest training samples us-
ing the representation-based distance (i.e., Equation (6)) are chosen. In the second phase,
the query sample is further represented by a linear combination of the chosen nearest
training samples and its k-nearest neighbors are determined. Then, the simple majority
vote among the chosen k-nearest neighbors are used as the classification decision. Unlike
CFKNN, LMRKNN adopts different ways of choosing k-nearest neighbors and designing
the classification decision. In LMRKNN, k-nearest neighbors of each query sample per
class are first determined by Euclidean distance, and the categorical k-local mean vec-
tors are computed by the corresponding class-specific k-nearest neighbors. Accordingly,
the query sample is represented by a linear combination of categorical multi-local mean
vectors. After the representation of the query sample by multi-local mean vectors, the
categorical representation-based distances are obtained and used as the classification of
LMRKNN.

4 THE ANALYSIS OF LMRKNN

In this section, we further analyze the good properties of the proposed LMRKNN method
from the perspective of the categorical representation-based distance and multi-local mean vec-
tors, and accordingly give the intuitive examples. As described in Section 3, the LMRKNN
employs a linear representation of the query sample on the basis of k-local mean vectors to
get the representation-based distance as the classification decision in each class, in order to
achieve good performance. Here, the importance of representation-based distance and multi-
local mean vectors for the favorable classification in the LMRKNN are theoretically and visually
analyzed.
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First of all, we analyze the good property of the categorical representation-based distance as the
classification decision in the LMRKNN, in comparisonwith the similar classification decision in the
LMKNN [33]. As stated in the LMRKNN, the categorical representation-based distance between
the query sample and each class in Equation (16) is in fact the distance from the query sample to
the sum of the weighted multi-local mean vectors per class as follows:

dk j (y) = ‖y − X̄y
j S̄k j ‖2 = ‖y −

k∑
i=1

s̄i jm
NN
ij ‖2. (18)

Furthermore, each local mean vector represents a local sample distribution in the class-specific
k-neighborhood and should have different appropriate importance of classification for its own
class. Through the linear representations of the query sample by using the categorical multi-local
mean vectors, the adaptive importance of classification for the query sample from each local mean
vector in each class is represented by the representation coefficient. We can use the derivative
of the class-specific representation-based distance with respect to each local mean vector as the
weighted classification contribution from each local mean vector to calculate the classification
decision. The derivative of dk j (y) with respect tomNN

ij is computed as follows:

∂dk j (y)

∂mNN
ij

=
∂‖y − X̄y

j S̄k j ‖2
∂mNN

ij

=
∂‖y −∑k

i=1 s̄i jm
NN
ij ‖2

∂mNN
ij

= −2 ��y −
k∑
i=1

s̄i jm
NN
ij

�
� s̄i j

= −2 ��y −
k∑
i=1

s̄i j

i
�
�

i∑
h=1

xNN
hj

�
�
�
� s̄i j

= 2
(
X̄
y
j S̄k j − y

)
s̄i j .

(19)

In terms of Equations (16) and (18), we can explain the good benefits of the classification deci-
sion in the proposed LMRKNN from two aspects. One is that each local mean vector give the
proper weighted contribution in representation-based distance according to its representation co-
efficient. The other one is that each neighbor in the different multi-local mean vectors fully has
different weighted classification importance for classification. Thus, from Equation (19), the cat-
egorical representation-based distances are very favorable for classification. In contrast to LM-
RKNN, LMKNN uses the distance between the query sample and the local mean vector ofk-nearest
neighbors in each class c j as the classification decision

d
(
y,mNN

kj

)
=
���y −mNN

kj
���2 =

������y −
1

k

k∑
i=1

xNN
ij

������
2

. (20)

Similar to Equation (19), the derivative of Equation (20) represents the weight of each neighbor for
classification as follows:
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Fig. 1. The example of the classification results of the query sample truly from the class 1 in the two-class
classification problem using different classification decisions.

∂d (y,mNN
kj

)

∂xNN
ij

=
∂‖y −mNN

kj
‖2

∂xNN
ij

=
‖y − 1

k

∑k
i=1 x

NN
ij ‖2

∂xNN
ij

= − 2
k
�
�y −

1

k

k∑
i=1

xNN
ij

�
�

=
2

k

(
mNN

kj − y
)
.

(21)

Obviously, each neighbor in the LMKNN gives the identical weight for the classification decision,
which is not suitable for classification.
To well verify the meaningfulness of the representation-based distance in the LMRKNN, we

give the examples in one two-classification task to analyze the classification decisions used in both
LMKNN and LMRKNN, shown in Figures 1 and 2. In fact, the used two-classification dataset origi-
nally has 166 attributes within two classes, each of which contains 100 samples that are randomly
chosen from each class in the real “Musk1” dataset, as shown in Table 2. For visualization, the
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Fig. 2. The example of the classification results of the query sample truly from class 2 in the two-class
classification problem using different classification decisions.

dimensionality of the samples is reduced from 166 to 2 by Fisher Criterion [33]. Suppose that nj
training samples are from class c j in C classes, then the Fisher Criterion F ( f ) is defined as follows

F ( f ) =

∑C−1
j=1

∑C
i=j+1 P (c j )P (ci ) (μf j − μf i )2∑C

i=1 P (ci )σ
2
f i

, (22)

where P (ci ) = ni/
∑C

j=1 nj , and μf i and σ 2
f i

are the average and variance on feature f for class

ci , respectively. By the Fisher Criterion F ( f ), these attributes in this dataset are listed in the
descending order, and the first two features are chosen for visualization in Figures 1 and 2. We
select a representative query sample from each class and give its intuitive classification results by
LMKNN and LMRKNN when the value of k is preset to be seven.
Using Equations (18) and (20), the classification results of two chosen query samples are

schematically displayed in Figures 1 and 2. Note that the query samples are denoted as the red
squares, the samples in the pink ellipses in green are their k-nearest neighbors from each class,

andmj =m
NN
kj
= 1

k

∑k
i=1 x

NN
ij is the local mean vector of their k-nearest neighbors in LMKNN and

r j = X̄
y
j S̄k j =

∑k
i=1 s̄i jm

NN
ij is the representation-based vector of their k-local mean vectors from

class c j in LMRKNN in the two figures. From the point-of-view of people, the query samples in
Figures 1 and 2 are classified into their true classes to a great extent according to the local sample
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distributions in the regions of the k-neighborhoods. However, in terms of distances frommj and r j
to the query samples, the LMKNNmistakenly classifies them, but the proposed LMRKNN correctly
classifies them. According to the nearest samples in the k-neighborhoods in Figures 1(a) and 2(a),
we can see that two query samples can be easily classified into thewrong classes due to the outliers,
which are from the different classes with the query samples. That is, the classification performance
of the LMKNN can be influenced by the outliers in terms of the distance between the query sample
and the local mean vector of k-nearest neighbors in each class, and its classification decision can
not provide the proper weighted contribution from each neighbor for classification. Furthermore,
we can clearly observe that the representation-based vector r j of k-local mean vectors computed
by k-nearest neighbors in class c j can well represent the geometrical and discriminant informa-
tion from its own whole class, shown in Figure 1(c) combined with Figure 1(a), and Figure 2(c)
combined with Figure 2(a). The reason can be from the fact that the categorical multi-local mean
vectors in the LMRKNN can reflect the different local sample distributions in the k-neighborhood
regions and each local mean vector has different importance to represent its own class through the
linear representation of the query using multi-local mean vectors. Thus, we can conclude that the
class-specific representation-based distance with more discrimination is very effective for classi-
fication.
Secondly, we mainly analyze the superior property of the categorical k-local mean vectors used

for the classification decision instead of the categorical k-nearest neighbors in terms of cosine
correlation coefficients of different points. It has been argued that multi-local mean vectors can
represent different local sample distributions of k-neighborhood that can overcome the sensitivity
of k and obtain promising classification [3, 5]. Just like the use of cosine correlation coefficients in
Ref. [2], the cosine correlation coefficient between points xi and x j is calculated as

sim(xi ,x j ) =
xTi x j

‖xi ‖‖x j ‖ . (23)

Then, the mean of cosine correlation coefficients among the given n points is calculated as

sim =
2

n(n − 1)
n−1∑
p=1

n∑
q=p+1

sim(xp ,xq ). (24)

It is well-known that for any two points xi and x j , the larger sim(xi ,x j ) is, the more similar they
are. If sim(xi ,x j ) tends to be 1, they are significantly similar with the same direction. Using Equa-
tions (23) and (24), we compute the means of cosine correlation coefficients of k-local mean vectors
and k-nearest neighbors from each class and use them to investigate their effect on classification.
The mean of cosine correlation coefficients of k-local mean vectors are computed as

sim(X̄
y
j ) =

2

k (k − 1)
k−1∑
p=1

k∑
q=p+1

sim
(
mNN

pj ,m
NN
qj

)
, (25)

where sim(mNN
pj ,m

NN
qj ) =

(mNN
pj )TmNN

qj

‖mNN
pj ‖ ‖mNN

qj ‖
. And the mean of cosine correlation coefficients of k-

nearest neighbors are computed as

sim
(
XNN
kj (y)

)
=

2

k (k − 1)
k−1∑
p=1

k∑
q=p+1

sim
(
xNN
pj ,x

NN
qj

)
, (26)

where sim(xNN
pj ,x

NN
qj ) =

(xNN
pj )T xNN

qj

‖xNN
pj ‖ ‖xNN

qj ‖
. According to Equation (25), if k-local mean vectors of the

query samples in each class are more similar to each other, their means of cosine correlation co-
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Fig. 3. The means of the cosine correlation coefficients of LMRKNN and LMKNN at different values of k for
each class onWine (“KN-i” and “KM-i” represent k-nearest neighbors and k-local mean vectors in each class
ci , respectively).

Fig. 4. The classification errors of LMRKNN and LMKNN with varying different values of k for each class
on Wine (“LMKNN-i” and “LMRKNN-i” represent LMRKNN and LMKNN in each class ci , respectively).

efficients will be very large. Similarly, the very similar k-nearest neighbors make their means of
cosine correlation coefficients to be too large in terms of Equation (26). In other words, the val-
ues of the means of cosine correlation coefficients in each class reflect the degrees to represent
their own class, and the larger means of cosine correlation coefficients should enhance the query
samples to be more correctly classified into its own classes.
Using Equations (25) and (26), the means of cosine correlation coefficients of k-local mean vec-

tors and k-nearest neighbors from each class are achieved on real Wine dataset with three classes
and displayed in Figures 3 and 4. The description of Wine is shown in Table 2. It should be noted
that both local mean vectors and nearest neighbors used in each mean of cosine correlation co-
efficients and their corresponding query samples are from the same class. From Figure 3, we can
observe that the means of cosine correlation coefficients of k-local mean vectors in each class are
significantly larger than the corresponding ones of k-nearest neighbors. This fact implies that the
classification results of the LMRKNN using k-local mean vectors are very better than the ones of
the LMKNN using k-nearest neighbors, which are verified in Figure 4. Furthermore, it can be seen
in Figure 3 that the means of cosine correlation coefficients in one class are often larger than the
ones in the other classes, and accordingly, its classification performance in the class is also better
than the ones in the other classes. Such fact is also well reflected in Figure 4. For example, the
classification results in class 1 are often best among three classes, and the classification results in
class 3 are often better than the ones in class 2 among the values of k . To further demonstrate this
point, the minimum and average classification results in three classes among the range of k are
illustrated in Table 1. Also, we can see that the means of cosine correlation coefficients of multi-
local mean vectors in each class at first slowly increase and then tend to be stable with the increase
of k in Figure 3; accordingly, the classification errors of the LMRKNN in each class often quickly
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Table 1. The Classification Errors (%) of LMKNN and LMRKNN
in Each Class on Wine among All Values of k

Minimum errors Average errors
The method Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
LMKNN 5.08 28.81 22.03 10.17 30.51 33.90
LMRKNN 1.69 15.25 3.39 6.09 28.36 9.49

degrade and the lower classification errors are always obtained at larger values of k in Figure 4.
This indicates that the proposed LMRKNN can use more nearest neighbors for the good classifica-
tion. The better classification performance with the larger means of cosine correlation coefficients
of k-local mean vectors in Figures 3 and 4 confidently reveals that the multi-local mean vectors
can well provide different suitable local sample distributions that have the more discriminant sim-
ilarities with the query samples for favorable classification. Thus, it can be concluded that k-local
mean vectors computed by k-nearest neighbors in the proposed LMRKNN are more helpful for
classification than k-nearest neighbors.

Through the analyses above, it can be found that the superior classification performance of the
proposed LMRKNN stems from themulti-local mean vectors and the representation-based distance
that become the main properties of the LMRKNN method.

5 EXPERIMENTS

In order to verify the classification performance of the proposed LMRKNN method, we carry out
the extensive experiments on many datasets by comparing LMRKNN with the state-of-art KNN-
based classifiers such as KNN, WKNN, LMKNN, CFKNN, PNN, and LMPNN in this section.

5.1 Datasets

The summarized information of all the used datasets in the experiments is briefly described in this
section. We use two types of datasets including 24 numerical datasets and 3 face image datasets.
These real numerical datasets are downloaded from the UCI machine learning repository [46] and
the KEEL Repository [47, 48]. The numbers of total samples, testing samples, attributes, and classes
of each dataset are listed in Table 2. Among these numerical datasets, “Libras,” “Bank,” “Cardio,”
“Image,” “Opt,” “Landsat,” and “Pen” are the abbreviated names of “LibrasMovement,” “Banknote,”
“Cardiotocography,” “Image segmentation,” “Optdigits,” “LandsatSatellite,” and “PenDigits,” re-
spectively. And most of the numerical datasets are the multi-class classification tasks. In the ex-
periments, each numerical dataset is randomly divided into the sets of training and testing samples
10 times. The final classification results of each method are the averages of the classification er-
rors among 10 runs. Note that the numbers of all samples in most of the chosen real numerical
datasets are mostly very small in order to demonstrate the classification performance of the pro-
posed method in the small training sample size cases.
The face image datasets used in the experiments are three popular face databases: Olivetti

Research Ltd (ORL), Georgia Tech (GT), and Pose, Illumination, and Expression (PIE). ORL
(www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html) contains 40 subjects, each of which
has 10 gray scale image samples. All image samples in each subject are collected by varying the
lighting, facial expressions, or facial details at different times, and the size of each image sample
is 112 × 92 pixels. GT (www.anefian.com/research/face_reco.htm) contains 50 subjects, each of
which has 15 frontal and/or tilted facial images collected by the variations in illumination condi-
tions, facial expression, and appearance. Each sample is a color JPEG image and the size of each im-
age is 640 × 480 pixels. PIE (www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html)
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Table 2. The Real Numerical Datasets Used in the Experiments

Data Samples Attributes Classes Testing samples
Wine 178 13 3 48
Seeds 210 7 3 45
Balance 625 4 3 135
Vowel 528 10 11 132
CNAE 1,080 856 9 450
Libras 360 90 15 90
Sonar 208 60 2 62
Musk1 476 166 2 130
Bank 1,372 4 2 950
Vehicle 846 18 4 360
Bands 365 19 2 50
Ecoli 307 7 4 104
Yeast 1,299 8 4 635
Iris 150 4 3 45
Wpbc 198 32 3 60
Cardio 2,126 21 10 670
Spambse 4,597 57 2 1,400
Texture 5,500 40 11 1,650
Image 2,310 19 7 770
Opt 5,620 64 10 3,000
Musk2 6,598 166 2 2,400
Landsat 6,435 36 6 2,170
Pen 10,992 16 10 4,000
Letter 20,000 16 26 6,500

Fig. 5. The examples of the image samples from one subject on each face dataset.

contains 41,368 image samples taken from 68 subjects. The image samples are captured by vary-
ing poses, illuminations, and expressions. A subset of PIE from 68 subjects, each of which has 24
samples, is adopted in the experiments. On three face datasets, all original images are aligned and
cropped, and then the size of each cropped image sample is resized to 32 × 32 with 256 gray levels
per pixel. Figure 5 shows the image samples of one subject in ORL, GT, and PIE, respectively.

5.2 Experiments on the numerical datasets

In this section, the classification performance of the proposed LMRKNN is highlighted on 24
real numerical datasets in terms of the classification error, compared to KNN, WKNN, LMKNN,
CFKNN, PNN, and LMPNN. The experiments are conducted by the 10-trials holdout validation,
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Fig. 6. The classification errors of each method via k on each numerical dataset.

and the final classification performance evaluations are the averages of the classification errors
10 times with 95% confidence.
From the point-of-view of the sensitivity of the neighborhood size k , the classification results of

all competing methods are first compared by varying the values of the parameter k . In the experi-
ments, the range of the neighborhood size k is preset from 1 to 15 with a step of 1. The classifica-
tion errors of each method on each real numerical dataset at different values of k are displayed in
Figures 6 and 7. Note that the differences of the classification errors between CFKNN and the other
methods are very significant on the Bank dataset; the classification errors of CFKNN are not il-
lustrated in Figure 6(h). And also, the possible reason of the poor classification results of CFKNN
in Figures 6 and 7 is that CFKNN could be often suitable for image classification [2] and not good
on the numerical datasets [3]. As can be seen from the experimental results in Figures 6 and 7,
the proposed LMRKNN always performs best among the seven methods with different values of
k . This clearly reveals LMRKNN is less sensitive to k than the other methods with better classifi-
cation results. Moreover, the improvements of the classification performance between LMRKNN
and the other six methods are often significant at relatively large values of k in most cases. This
experimental fact implies that the proposed LMRKNNmethod can use more nearest neighbors for
better classification than the other methods. In addition, as shown in Figures 6 and 7, the curves
of the classification errors of the LMRKNN with varying the values of k are always smoother and
flatter than other methods on most of the datasets, especially when the value of k is large. Thus,
the experimental results via the changes of k show that the proposed LMRKNN holds the less sen-
sitiveness of k with the significant improvement of the classification performance, compared to
the competing KNN-based classifiers.
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Fig. 7. The classification errors of each method via k on each numerical dataset.

To further highlight the effectiveness of the proposed LMRKNN, the best classification results
of each competing method among the range of k from 1 to 15 are explored. The minimum classi-
fication errors of each method with the corresponding standard deviations (stds) and the optimal
values of k in the parentheses on all real numerical datasets are listed in Table 3. Note that the best
classification performance among the seven KNN-based methods on each dataset is indicated in
bold-face. As shown in Table 3, we can obviously see that the LMRKNNmethod nearly outperforms
the other methods on all datasets. Most importantly, we can find two facts from the experimental
results in Table 3. The one is that the proposed LMRKNNmethod often significantly performs bet-
ter than the other methods under the situations of the small training sample size problems, such
as onWine, Musk1, CNAE, Libras, and Bands. The other one is that the LMRKNN always achieves
the best classification at larger values of k than KNN, WKNN, LMKNN, and PNN, which is also
embodied in Figures 6 and 7. Such experimental facts imply that the proposed LMRKNN can obtain
good classification performance by fully using more nearest neighbors with the robustness to k
and performs well in the small training sample size cases. It should be noted that the LMPNN uses
more nearest neighbors for good classification just like LMRKNN. This possible reason is that both
LMRKNN and LMPNN are based on multi-local mean vectors. Besides, the average minimum clas-
sification error of LMRKNN on all datasets is significantly lower than the other methods, which
reveals that the classification performance of LMRKNN is very robust and stable.
The experimental results above are obtained by using ten-trials holdout validationwith 95% con-

fidence. However, the comparisons of the state-of-art KNN-based methods may not be statistically
convincible. In order to further validate whether the proposed LMRKNN outperforms the other
competing methods or not, one of the famous non-parametric statistical tests called the Friedman
test [49–51] is performed. The Friedman test first ranks the competing methods on each dataset
in terms of the classification errors in Table 3. Specifically speaking, the first method with the best
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Table 3. The Minimum Classification Error Results (%) of Each Method on All the Real Numerical Datasets

Data KNN WKNN LMKNN CFKNN PNN LMPNN LMRKNN

Wine 26.67±4.37 26.25±4.83 24.58±3.90 16.46±6.01 25.00±6.51 23.75±4.93 5.83±2.91
(1) (6) (4) (15) (3) (15) (15)

Musk1 13.92±3.02 12.85±2.46 9.62±2.06 21.00±2.12 13.31±2.35 10.23±2.27 8.69±1.81
(4) (6) (6) (12) (3) (14) (14)

Vowel 3.56±1.39 3.56±1.39 3.56±1.39 19.32±2.93 3.56±1.39 3.41±1.57 2.65±1.09
(1) (1) (1) (1) (1) (3) (8)

Balance 6.15±1.35 4.81±1.27 4.89±1.49 17.56±1.88 4.15±1.27 3.85±1.20 3.11±0.84
(4) (7) (3) (15) (3) (4) (13)

Seeds 6.89±2.66 6.89±2.66 5.33±3.18 7.11±2.73 5.78±1.87 5.33±2.81 5.11± 2.78
(1) (1) (7) (15) (6) (6) (3)

CNAE 16.78±1.06 13.60±1.86 9.11±1.33 11.29±1.70 12.80±1.61 10.31±1.47 7.76±1.06
(3) (15) (9) (6) (11) (15) (15)

Libras 17.33±4.45 16.33±4.06 14.00±4.60 23.44±4.76 16.56±4.58 13.78±4.75 10.78±2.62
(1) (5) (2) (4) (2) (3) (14)

Bank 0.37±0.20 0.37±0.20 0.33±0.14 9.04±1.33 0.37±0.20 0.31±0.14 0.20± 0.14
(1) (1) (5) (15) (1) (15) (8)

Sonar 16.61±4.30 16.13±3.65 15.32±4.11 13.55±4.11 16.61±4.30 14.52±4.02 12.42±2.16
(1) (4) (3) (4) (1) (13) (12)

Cardio 30.51±1.50 29.22±1.28 29.25±1.26 48.54±2.32 28.75±1.28 26.42±1.13 26.52±1.48
(1) (7) (2) (15) (4) (12) (15)

Vehicle 33.39±1.37 32.17±1.09 29.33±1.34 29.19±1.67 32.14±1.13 29.64±1.37 28.89±1.13
(3) (5) (3) (15) (4) (9) (5)

Ecoli 12.00±2.47 11.81±2.21 11.05±1.86 14.29±2.29 12.48±2.31 11.62±1.67 11.05± 2.02
(11) (12) (12) (13) (9) (12) (13)

Bands 35.40±6.19 34.20±7.08 34.80±4.44 34.00±6.67 35.40±6.19 35.20±6.48 29.80±5.20
(1) (4) (2) (1) (1) (2) (6)

Yeast 39.69±1.51 39.95±1.45 41.17±1.24 44.25±2.38 39.50±1.21 41.70±1.10 38.71±1.14
(15) (15) (14) (14) (15) (15) (15)

Iris 1.56±1.83 1.11±1.57 1.56±1.50 10.44±4.69 1.11±1.57 1.78±1.41 1.11±1.57
(6) (9) (2) (10) (13) (4) (11)

Wpbc 26.90±3.65 27.41±5.10 23.97±2.87 24.14±1.63 26.38±5.39 25.17±3.47 23.79±2.12
(8) (7) (15) (13) (4) (15) (14)

Spambase 19.51±1.22 18.67±1.06 17.44±0.88 40.16±1.12 18.04±1.01 16.54±0.82 11.30±0.73
(1) (10) (11) (15) (5) (15) (15)

Texture 1.10±0.14 1.02±0.26 0.87±0.16 1.54±0.14 1.02±0.24 0.76±0.12 0.36±0.15
(1) (6) (2) (10) (3) (4) (7)

Image 7.30±0.83 7.27±0.53 6.86±0.44 14.99±1.13 7.17±0.65 6.39±0.87 6.00±0.36
(1) (7) (4) (15) (2) (8) (11)

Opt 1.64±0.19 1.51±0.19 1.11±0.21 2.19±0.12 1.46±0.15 1.10±0.17 1.01±0.12
(1) (7) (9) (15) (2) (15) (15)

Musk2 4.28±0.38 3.92±0.20 3.37±0.22 3.03±0.09 3.79±0.25 3.52±0.18 3.38±0.25
(4) (7) (4) (1) (10) (12) (5)

Landsat 18.76±0.51 18.18±0.74 15.37±0.45 42.66±0.90 18.14±0.44 15.64±0.85 15.23±0.66
(7) (13) (13) (15) (11) (15) (15)

Pen 0.70±0.12 0.62±0.07 0.52±0.04 3.77±0.46 0.62±0.11 0.47±0.09 0.45±0.05
(4) (8) (3) (15) (4) (15) (10)

Letter 4.57±0.28 4.25±0.25 3.77±0.17 32.56±0.50 4.19±0.25 3.28±0.15 3.23±0.17
(4) (9) (4) (15) (4) (15) (15)

Average 14.40±1.87 13.84±1.89 12.80±1.64 20.19±2.24 13.68±1.93 12.70±1.68 10.72±1.36
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Table 4. The Average Ranks of the Competing Methods Using Friedman Test on All Real
Numerical Datasets

Method KNN WKNN LMKNN CFKNN PNN LMPNN LMRKNN
Average rank(Ri ) 5.75 4.64 3.39 5.50 4.50 3.08 1.14

performance among all the methods gains the rank of 1, the second one the rank of 2, and so on.
When some methods have the same classification performance, the average ranks are assigned for

them in such a tie. Let R j
i be the rank of the ith one of t methods on the jth one of n datasets. The

average rank of the ith method on n datasets is Ri =
1
n

∑n
j=1 R

j
i . Under the null hypothesis of the

Friedman test, all competing methods nearly achieve a similar classification performance, and the
ranks Ri could be identical. The Friedman statistics is defined as

X2
F =

12n

t (t + 1)

⎡⎢⎢⎢⎢⎣
∑
i

R2
i −

t (t + 1)2

4

⎤⎥⎥⎥⎥⎦ . (27)

Note that when n > 10 and t > 5, Friedman statistics is distributed by X2
F with t − 1 degrees of

freedom.
In terms of the classification errors in Table 3, we use the Friedman test to investigate the classi-

fication performance of the proposed LMRKNN, compared to the other six classifiers. The average
rank of each method is listed in Table 4 according to the classification results from Table 3. Using
the average ranks,X2

F = 85.162 is computed by Equation (27). Under the null hypothesis, the mean

rank R = 4.0014 can be achieved if all the competing methods perform similarly andX2
F with 7 − 1

degrees of freedom at α = 0.05 is (X2
F )0.05 = 12.592. As shown in Table 4, the average ranks Ri of

all methods are different from the mean rank R, and the differences of the average ranks between
the proposed LMRKNN and the other methods are very significant. Moreover, X2

F for all compet-

ing methods is significantly larger than (X2
F )0.05. Consequently, the non-parametric statistical test

demonstrates that seven competing KNN-based classifiers are very different, and the proposed
LMRKNN performs significantly.

5.3 Experiments on the image datasets

In this section, the classification performance of the proposed LMRKNN is studied in the high-
dimensional face datasets including PIE, ORL, and GT in terms of the classification error, compared
to KNN, WKNN, LMKNN, CFKNN, PNN, and LMPNN. As we know, the KNN-based classification
performance can be easily degraded in the case of the curse of dimensionality. In the experiments,
the dimensionality of each image sample is 1024. And we employ ten-trials holdout validation to
conduct the experiments on each image dataset, and the averages of the classification errors on
10 trials with 95% confidence are obtained as the final classification results. That is to say, each
image dataset is randomly divided into training samples and testing samples 10 times. On each
dataset, l samples of each class are chosen as the training samples and the others are the testing
ones.
The classification performance of the competing KNN-based methods is explored by varying

the neighborhood size k in terms of the classification error on each image dataset. The values of
k are varied from 1 to l with a step of 1. The classification results of each method via k are shown
in Figure 8. We can see that the proposed LMRKNN almost performs best among the competing
methods with different values of k , and the improvements of LMRKNN are very significant when
k is large. So that the robustness of LMRKNN to the sensitivity of k can be obviously verified.
Moreover, the classification errors of LMRKNN at first quickly descend at small values of k and
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Fig. 8. The classification errors of each method via k on PIE, ORL, and GT image datasets.

Table 5. The Minimum Classification Errors (%) of Each Method with the Corresponding Standard
Deviations (stds) and the Optimal Values of k in the Parentheses on the Image Datasets

Data l KNN WKNN LMKNN CFKNN PNN LMPNN LMRKNN

PIE

10
23.61±1.68 23.61±1.68 23.61±1.68 8.95±0.64 23.61±1.68 22.71±2.02 7.88±0.77
(1) (1) (1) (3) (1) (2) (10)

15
13.50±2.07 13.50±2.07 13.50±2.07 10.03±1.43 13.50±2.07 12.81±2.21 6.31±1.50
(1) (1) (1) (1) (1) (2) (12)

ORL

5
11.60±2.07 11.60±2.07 10.50±1.66 9.80±2.61 11.60±2.07 10.70±1.79 7.90±1.47
(1) (1) (2) (4) (1) (4) (5)

7
8.00±3.47 7.83±3.47 6.17±3.75 5.33±1.92 8.00±3.47 5.83±3.12 4.00±2.24
(1) (4) (2) (5) (1) (5) (6)

GT

8
30.51±1.80 29.60±1.76 25.37±2.39 29.71±1.28 29.26±1.77 25.20±2.46 23.20±2.20
(1) (6) (3) (5) (3) (7) (7)

10
26.00±2.06 25.28±1.31 22.00±0.63 25.60±3.01 25.36±1.73 21.20±1.44 18.48±1.80
(1) (6) (3) (8) (2) (6) (8)

then tend to be stable when k becomes large. However, unlike LMRKNN, the classification errors
of the other methods nearly ascend with the increase of k . In addition, the proposed LMRKNN
always performs better at larger values of k than the other methods. This means LMRKNN can
use more nearest neighbors for better classification.
The best classification performance of each method among the ranges of k on three image

datasets are displayed in Table 5. Note that the best classification result on each dataset among
the competing methods is denoted in bold-face. From the experimental results in Table 5, we can
clearly observe that the proposed LMRKNN significantly outperforms the other six methods, and
the best performance of LMRKNN is obtained at larger values of k than the other methods. Hence,
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the proposed method is more effective and robust than KNN, WKNN, LMKNN, CFKNN, PNN, and
LMPNN with better classification results.

6 DISCUSSIONS

In this section, we first briefly give the observations from the experiments in Section 5 and then
the analysis of the computational complexities of the competitive methods.

6.1 Experimental Observations

From all the comparative experiments on both the real numerical datasets and the image datasets
above, we can briefly achieve several observations for the LMRKNN as follows:

—It can reduce the sensitivity of choosing the neighborhood size k with the promising clas-
sification performance through multi-local mean vectors of k-nearest neighbors from each
class.

—It can generally achieve the better classification performance by using the categorical multi-
local mean vectors of more nearest neighbors.

—It can often perform better in the case of the small training sample size and the curse of
dimensionality.

—It is more effective and robust with a good classification performance by adopting the class-
specific representation-based distances as the classification decision.

These experimental observations for LMRKNN coincide with the good properties of the cat-
egorical multi-local mean vectors and representation-based distance described and analyzed in
Sections 3 and 4. Therefore, it has been proved that the proposed LMRKNN is a promising method
with effectiveness and robustness for the KNN-based classification in pattern recognition.

6.2 Computational Complexities

To further embody the effectiveness of the proposed LMRKNN, we analyze the comparative effi-
ciency of the LMRKNN, KNN, WKNN, LMKNN, CFKNN, PNN, and LMPNNmethods by providing
their computational complexities. In the computational complexities of the competing methods,
several notations commonly used are the training sample size n, dimensionality of each sample
d , and the number k of neighbors. As stated in Ref. [52], the main computational time of classi-
fying the query sample in KNN and WKNN is to search k-nearest neighbors by calculating Eu-
clidean distances from the query sample to all the training samples. Accordingly, the main com-
putational complexities of KNN andWKNN areO (nd + nk + k ) andO (nd + nk + 2k ), respectively.
In LMKNN, the query sample is classified by finding categorical k-local mean vectors, which are
computed by the corresponding categorical k-nearest neighbors chosen from the class-specific
training samples. So the main computational complexity of LMKNN is O (nd + nk + ckd + cd ). In
PNN, the query sample is classified by finding the categorical pseudo-nearest neighbors, which
are determined by searching categorical k-nearest neighbors and assigning the weight to each
distance between the query sample and each neighbor. As a result, the main computational com-
plexity of PNN is O (nd + nk + 2ck ). In LMPNN, the query sample is also classified by finding
the categorical pseudo-nearest neighbors on the basis of categorical k-local mean vectors, which
are calculated by categorical k-nearest neighbors. Thus, the main computational complexity of
LMPNN is O (nd + nk + 2ckd + 3ck ). In CFKNN, the query sample is classified by mainly using
two-phase representation of the query sample. In the first phase, the query sample is represented
by a linear combination of all the training samples, and then n0 representative training samples
are chosen to represent the query sample in the second phase; finally, k-nearest neighbors chosen
from n0 representative samples are determined. So the main computational complexity of CFKNN
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Table 6. The Runtime (s) of Each Method on Seed, Musk1, Libras, Vowel, Cardio, and CNAE
(the Values in the Parentheses Are the Numbers of Training Samples, Testing Samples, Attributes,

and Classes, Respectively)

Data KNN WKNN LMKNN CFKNN PNN LMPNN LMRKNN

Seeds
0.0056 0.0068 0.0102 0.0505 0.0084 0.0105 0.0132

(210,45,7,3)
Musk1

0.0545 0.0557 0.0811 0.3719 0.0770 0.0842 0.0910
(476,130,166,2)

Libras
0.0205 0.0224 0.0768 0.2060 0.0642 0.0914 0.1427

(360,90,90,15)
Vowel

0.0127 0.0150 0.0519 0.3134 0.0448 0.0596 0.0936
(528,132,10,11)

Cardio
0.1667 0.1745 0.4491 8.0259 0.3985 0.4750 0.6430

(2126,670,21,10)
CNAE

3.6024 3.6108 5.7014 6.701 5.6238 5.8841 6.1133
(1080,450,865,9)

is O (n3 + n30 + n0n + kn0). In the proposed LMRKNN, the categorical k-nearest neighbors and the
corresponding k-local mean vectors are first obtained, and then the query sample is represented
by a linear combination of k-local mean vectors per class; finally, the query sample is classified
by categorical representation-based distances among all classes. Hence, the main computational
complexity of LMRKNN is O (nd + nk + 2ckd + ck3 + cd ).

Combined with the computational complexities of the comparative methods above, we take the
Seed, Musk1, Libras, Vowel, Cardio, and CNAE datasets as examples to give the runtime of each
method when k = 5. The numbers of training samples, testing samples, attributes, and classes in
these datasets are different, as shown in Table 2. Note that all our experiments are carried out in
the 64-bit Windows 7 operating system using Intel(R) Core(TM) i7-3770 CPU @3.40GHz 3.40GHz
and 12GB of memory. Table 6 shows the runtime of all comparative methods to classify the testing
samples on these five datasets. As displayed in Table 6, it is clear that the values of the runtime of
all methods are in accordance with their corresponding computational complexities.

7 CONCLUSIONS

This article proposes a local mean representation-based k-nearest neighbor classifier (LMRKNN).
The purpose of LMRKNN is to improve the KNN-based classification performance and to
overcome the main issues that exist in KNN. In the LMRKNN, the categorical multi-local mean
vectors computed by k nearest neighbors in each class are used for truly reflecting the different
local sample distributions, which can not only reduce the sensitivity of the neighborhood size
k , especially in the small training sample size cases, but also capture more geometrical and
discriminant information for classification. To enhance the true importance of each local mean
vector for representing its own class in making classification decisions, the query sample is
represented by a linear combination of the categorical multi-local mean vectors in each class and
then the solved representation coefficient of each local mean vector as the weighted contribution
to representing the query sample is used for designing the representation-based distance. This
categorical representation-based distance, as the elaborate distance metric, is the similarity
between the query sample and the categorical multi-local mean vectors in each class and is
used as the classification decision. The representation-based distance can overcome the negative
effect of the simple majority vote and the conventional similarity metric in KNN. These good
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properties of the proposed LMRKNN for the favorable classification are analyzed in details. The
extensive experiments on many real numerical datasets and three image datasets are conducted by
comparing LMRKNN with the state-of-art KNN-based methods. The experimental classification
results show that the proposed LMRKNN significantly outperforms the competing methods, and
it is an effective and robust classifier in pattern recognition.
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